Retinal Examination

University of Milan - Bicocca University of Milan December 2003

anthony.cavallerano@va.gov

There are various methods of examining the retina.

These include:

- direct ophthalmoscopy
- monocular indirect ophthalmoscopy
- binocular indirect ophthalmoscopy

A comparison chart of the 3 instruments can demonstrate the advantage and disadvantages of the 3 instruments

Eg: lesion is 1/2DD in size Hx V and 2DD away superior temporal from the optic nerve head

Monocular Indirect Ophthalmoscope

Instrument:

- Magnifying eyepiece
- Relay system re-inverts image to a real one
- Image is focused using eye piece

Indication of use:

- Small pupils
- Uncooperative children
- Patients intolerant to bright illumination
- One handed technique
- Person who is monocular

	Direct Ophthalomoscopy	Monocular Indirect Ophthalmoscopy	Binocular Indirect Ophthalmoscopy
Image		Upright	
Magnification		5x fixed mag	
Field of View		40-45 degrees	
Equivalent in DD size		8DD	
Pupil size		Undilated	
Stereopsis		No stereopsis	
Resolution		Fair	
Working Distance		Short distance	
Media Evaluation			

Binocular Indirect Ophthalmoscope

Instrument: consists of a:

• optical viewing system

rheostat illuminating system

headband

Optics:

- Light from B.I.O. directed into patients eye
- Reflected beams from retina are focused using a high plus lens
- Aerial image produced

Condensing Lens:

Magnification: F eye / F condensing = Mag x

Magnification versus field of view

<u>Lens size</u>	Magnification	Field of View
20D	3x	less than 30D lens
30D	2*	greater than 20 lens
15D	4x	less than 20 and 30D lens
2.2D	mag equivalent of 20D	field of view equivalent of 30D

PD measurement

- Location of light source
- Headband fit vs. spectacle
- Obtain stereopsis
- Holding the condensing lens
- Examiner and patient position

- PD measurement
- Location of light source
- Headband fit vs. spectacle
- Obtain stereopsis
- Holding the condensing lens
- Examiner and patient position

- PD measurement
- Location of light source
- Headband fit vs. spectacle
- Obtain stereopsis
- Holding the condensing lens
- Examiner and patient position

- PD measurement
- Location of light source
- Headband fit vs. spectacle
- Obtain stereopsis
- Holding the condensing lens
- Examiner and patient position

- PD measurement
- Location of light source
- Headband fit vs. spectacle
- Obtain stereopsis
- Holding the condensing lens
- Examiner and patient position

Binocular Indirect Ophthalmoscopy

- Holding the condensing lens
- Distance of condensing lens and eye
- Red reflex
- Filling the condensing lens image

Binocular Indirect Ophthalmoscope

- Examine the retina in a chronological order
- Obtain overlapping views
- 9 positions to examine

eg. To examine the patient's right eye at the 3 o'clock position, direct the patient's gaze to that position (3 o'clock)

- You record your results in the 3 o'clock position
- However in your view at this position everything is inverted and reversed

Universal (Goldmann) 3-Mirror Lens

- Contact technique: lens with slit lamp biomicroscope
- Lens placed on the cornea
- 3- dimensional view obtained
- Used both on undilated and dilated pupil

Universal (Goldmann) 3-Mirror Lens

- <u>Central lens</u>: used for posterior pole evaluation
- <u>Trapezoid mirror</u>: for equatorial retinal evaluation
- <u>Rectangular mirror</u>: for equator to ora retinal evaluation
- <u>Gonio mirror</u>: evaluation of the ora serrata

Universal (Goldmann) 3-Mirror Lens

<u>Central lens</u>: used for posterior pole evaluation

- <u>Trapezoid mirror</u>: for equatorial retinal evaluation
- <u>Rectangular mirror</u>: for equator to ora retinal evaluation
- <u>Gonio mirror</u>: evaluation of the ora serrata

Goldmann 3 Mirror Lens

- <u>Central lens</u>: used for posterior pole evaluation
- <u>Trapezoid mirror</u>: for equatorial retinal evaluation
- <u>Rectangular mirror</u>: for equator to ora retinal evaluation
- <u>Gonio mirror</u>: evaluation of the ora serrata

Hand-held Condensing Lens

Advantages:* non-contact * provides stereopsis * use with slit lamp biomicroscope * well illuminated view of the posterior pole * alternative procedure to Goldmann 3 mirror lens

INDIRECT OPHTHALMOSCOPY AND SLIT LAMP BIOMICROSCOPY LENSES

Condensing Lens

- * double aspheric lens
- * clear or yellow coated
- * available in many different powers
- * pupil dilation desirable
- * lens alignment, visual axis centration, vertex distancing tilting is needed in this procedure

Comparison of auxillary lenses

<u>Lens size</u>	Magnification	Field of View	working
			distance from
			<u>cornea</u>
60D	1.09	67 degrees	11mm
78D	0.87	68 degrees	7 mm
90D	0.72	69 degrees	6.5mm
Superfield	0.76	116 degrees	
Super 66	1.00	96 degrees	

